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ABSTRACT 
he incorporation of deep learning enhances the morphological identification process 
have been improved. However, there has been limited investigation into the model's 
accuracy concerning species complexity. This study aimed to enhance mosquito 

identification using multi-stage deep learning on the CiRA CORE platform. An image 
collection of 175,000 pictures from 7 mosquito species obtained from the laboratory and field 
strains (Ae. aegypti, Ae. albopictus, Anopheles minimus, An. harrisoni, An. dirus, An. 
maculatus, and Culex quinquefasciatus). Hundred mosquito samples from each species was 
photographed with minimum 10 different view sides. The images were subsequently put 
through the augmentation process 25 times to increase the numbers of images to 25,000 images 
per species. Model evaluation, based on 173 observations, showed that the model achieved 
90±5% accuracy in distinguishing among genus levels (Aedes, Anopheles, and Culex groups). 
Optimization processes demonstrated the model's accuracy in Ae. aegypti 99%, Ae. albopictus 
99%, An. minimus 94%, An. harrisoni 86%, An. dirus 98%, An. maculatus 98%, and Cx. 
quinquefasciatus 98%. We further evaluated the mosquito identification efficacy between AI 
and public health officers using 30 unknown images among the seven total mosquito species. 
Results showed no significant difference in species classification between the AI system and 
public health officers (P value > 0.05). Surprisingly, at the species complex identification level, 
the AI system demonstrated a significant 90% accuracy advantage over public health officers 
(P value < 0.05). This AI system represents an optional tool to support vector surveillance in 
the local public health officers, enabling faster and more accurate mosquito monitoring.  
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INTRODUCTION 

Mosquitoes are a major global problem 
vectors of many diseases (e.g., Malaria, 
Dengue, West Nile Fever, and most 
recently Zika Fever). Over 100,000 people 
worldwide die from mosquito-borne 
diseases every year (WHO malaria report 
2018). Moreover, the increasing 
globalization that leads to expanding the 
habitats of many vector species. The 
surveillance of mosquitoes relies on capture 
by the variation of several collecting 
methods such as human-baited, animal-
baited or artificial-baited trap, which 
requires regular manual inspection, 
dedicated personnel, making large-scale 
monitoring difficult and expensive (Motta 
et al, 2019). Moreover, mosquito 
classification is the classical important 
method for medical investigation of vector-
borne disease that can determine the 
relationship between vector and disease 
including epidemiology distribution, and 
the potential of transmission diseases. In 
general, the morphological-base 
microscopic identification is a practical 
routine process which is inexpensive and 
requires minimal tools and/or equipment. 
Although it requires well training and needs 
a high level of expertise, the species 
complex is still limited. 

Deep learning machines have been 
applied to entomological work in many 
publications, such as the geometric 
morphometrics technique (Jame Rohlf and 
Bookstein, 1990) and the Buzz of wingbeats 
detection (Li et al, 2005; Tai-Hsien et al, 
2015; Kiskin et al, 2017) which were 
applied by mosquito’s wing vein and wing 
beat sound. Moreover, visualization deep 
learning method have been reported with 
successful application of the innovation of 
deep learning framework to use in mosquito 
morphological identification (Huang et al, 
2018; Minakshi et al, 2020; Joshi and 
Miller, 2021). Improvement of the accurate 
toolkit for visualization identification 

(Mulchandani et al, 2019) can narrow the 
gap of the entomological field.  

Currently, entomological identification 
have been developed by artificial 
intelligence technology for classification of 
images (Orlando et al, 2015; Goodwin 
2021). However, the optimization of 
accuracy and apply in the practical field 
remains challenge. This research aimed to 
optimize conditions of artificial intelligence 
technology for mosquito vectors 
classification for increasing the accuracy 
and efficiency. The trained model could be 
further applied in practical field 
applications. 

MATERIALS AND METHODS 

Ethics Statement 
Animal and Human ethics documents 

was submitted to the Ethics Committee 
(EC) at the Faculty of Tropical Medicine on 
January 2023. The certificate number: 
FTM-ACUC 002/2023. 

 Sample collections 
Laboratory specimens from the 

Insectary, Department of Medical 
Entomology, Faculty of Tropical Medicine, 
Mahidol University, were used in the initial 
phase for training on complete morphology 
characteristics. Field samples, collected 
from cow bait traps and larvae collection 
technique, focused on Anopheles 
mosquitoes in districts across Thailand (Tha 
Song Yang District, Tak province; Saiyok 
district, Kanchanaburi province; and 
Suanphueng district, Ratchaburi province). 
One hundred mosquitoes per species was 
targeted in the collection. Adult mosquito 
specimens were kept in 1.5 mL microtubes 
with silica beads. Larval collections were 
transferred to the laboratory of the 
Department of Medical Entomology, 
Faculty of Tropical Medicine, Mahidol 
University, and maintained until emerging 
into the adult stage. Mosquitoes were 
determined to species by morphological 
characters (Rattanarithikul et al, 2006). For 
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long-term preservation, the mosquitoes 
were stored at -20°C in microtube boxes. 
The dataset was created to classify among 
the difference species of Ae. albopictus, Ae. 
aegypti, Ae. albopictus, An. minimus, An. 
dirus, An. maculatus, Cx. quinquefasciatus. 
All mosquito pictures were separated into 3 
groups (deep training group, validate group 
and testing group). All visualized data were 
labeled by a professional entomologist 
under the CiRA CORE program. 

 Species complex confirmation 
One of the common problems in 

mosquito classification is complex species 
that have the same physical characteristics 
but clearly different DNA. Anopheles 
minimus is the candidate complex species 
of malaria vector available in Thailand 
(Taai et al., 2017). After morphology 
identification, every An. minimus A and An. 
harrisoni specimen were cut in the middle 
leg for confirmation through the modify 
PCR (Polymerase Chain Reaction) method 
using the AS-PCR assay based on ITS2 
rDNA sequences (Taai et al, 2017). 
Genomic DNA was extracted from 
individual adult females using the 
DNeasy® Blood and Tissue Kit (Qiagen, 
Hilden, Germany), and the isolated DNA 
underwent sequential PCR procedures. The 
ITS2 region was amplified using the 
universal forward primer ITS2A (5′-TGT 
GAA CTG CAG GAC ACA T-3′) and the 
specific reverse primers MIA (5′-CCC GTG 
CGA CTT GAC GA-3′ for An. minimus) 
and MIC (5′-GTT CAT TCA GCA ACA 
TCA GT-3′ for An. harrisoni). PCR was 
carried out in 25 μL volumes containing 0.5 
U of Taq DNA polymerase, 1× Taq buffer, 
2.0 mM of MgCl2, 0.2 mM of each dNTP, 
0.25 μM of each primer, and 1 μL of the 
extracted DNA. The amplification profile 
comprised initial denaturation at 94 °C for 
2 min, 30 cycles at 94 °C for 30 s, 45 °C for 
30 s, and 72 °C for 40 s, followed by a final 
extension at 72 °C for 5 min. The amplified 
products were electrophoresed on a 1.5% 
agarose gel. Additionally, PCR products 

were sequenced using the BigDye® 
Terminator Cycle Sequencing Kit and 
analyzed with the 3130 genetic analyzer for 
species confirmation. 

Dataset 
The dataset comprises images sourced 

from the training group, including Ae. 
aegypti, Ae. albopictus, Anopheles 
minimus, An. harrisoni, An. dirus, An. 
maculatus, and Culex quinquefasciatus. 
Each species' sample images were 
meticulously prepared in 10 different 
views, encompassing whole body, right and 
left-lateral view, dorsal view, ventral view, 
as well as specific parts such as head, 
head+thorax, wing, leg, and abdomen. To 
enhance diversity, these images underwent 
augmentation, resulting in 25,000 
variations per species, as depicted in Figure 
1. The augmentation process involved 
techniques such as image rotation, vertical 
and horizontal flips, and adjustments for 
sharpness, highlights, and shadows. 
Captured using a Nikon automatic high-
resolution camera and a smartphone, these 
images were trained into the AI system, 
accommodating both high-resolution and 
mobile pictures for practical field 
applications in mosquito data collection. 
The high-resolution camera operated at 
2048 x 1365 pixels, while smartphone 
pictures were captured at 1920 x 1080 
pixels, directly under a stereomicroscope. 

Dataset sample size comparison 
The purpose of the experiment was to 

determine the relationship between sample 
size and accuracy in the context of species 
identification. The variation of mosquito 
images among 40, 60, 80, and 100 images 
were prepared and compared the 
percentages of accuracy and precision 
levels by The Receiver Operating 
Characteristic (ROC) curve of Deep 
classification. 

  



J I T M M  P R O C E E D I N G S  

Vol. 12 (2024)   39 

 

 

 

 

 

 

 

 

 

 

 

Figure 1    Picture augmentation technique for mosquito dataset. 

 

 

 

 

 

 

Figure 2    Deep learning techniques. In Deep detection (left), the labeling area specifically targets 
the identification of Ae. aegypti mosquitoes. Conversely, in Deep Classification (right), identification 
of Ae. aegypti is achieved through a non-specific point on mosquito pictures. 
 
 
 
Network selection 

The Deep learning model operated on 
CIRA CORE Software. This software is 
developed from the Faculty of Engineering, 
King Mongkut's Institute of Technology 
Ladkrabang. For GPU processing by nVidia 
DIGITS software with a NVIDIA Geforce 
RTX 2070 super. Software were processed 
on the Linux Ubuntu operating system LTS 
Distribution 16.04.  In this research, the 

modified-learning methods were trained on 
two-stage YOLO versions. Recently, an 
experiment indicated that the accuracy rate 
of the two-stage version was significantly 
higher than the one-stage YOLO version. 
Project conducted with personal computer 
contain with CPU: Intel Core i5 8500, Ram: 
16Gb, And GPU: RTX 2070 super 8Gb 
running on Linux Ubuntu 16.03 operation. 
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Deep learning techniques 
The CiRA CORE software offers two 

main deep training methods for image 
recognition: Deep classification and Deep 
detection. Deep detection, illustrated in 
Figure 2 (left), involves labeling the focus 
area to “extract” entomological 
characteristics of mosquitoes, from genus to 
species level, using techniques like YOLO 
V3 model. Conversely, Deep classification, 
depicted in Figure 2 (right), focuses on mass 
datasets of mosquito pictures, using the 
Classif-Function in CIRA CORE to classify 
multiple pictures per species into groups 
like "Non-extraction morphology." 

Approach model to Entomological 
taxonomy logic 

Our objective was to develop an artificial 
intelligence model capable of species 
identification comparable to that of an 
entomologist. Illustrated in Figure 3, the 
workflow outlines the multi-layer models 
employed for mosquito identification. The 
dataset comprises images exhibiting 
distinct morphological features among 
various mosquito species. Initially, a 
decision is made to classify an image as a 
"mosquito". Subsequently, focus shifts to 
the morphological features of each organ. 
The dataset is annotated to identify four 
specific regions: 1) the upper region 
encompassing all organs on the head and 
thorax, 2) the entirety of the wings, 3) the 
abdominal boundary extending from the 
thorax to the final segment, and 4) the legs. 
The last model undergoes extensive training 
for accurate identification of mosquito 
species. 

Mosquito identification comparison 
between human and deep learning 

The efficacy of mosquito identification 
was assessed through a comparison 
between human and AI capabilities in 
identifying mosquito species from a total of 
30 pictures. Twenty entomologists 

specializing in field surveillance, selected 
from the Bureau of Communicable 
Diseases division and the Department of 
Disease Control of Tak province, 
Ratchaburi province, and Kanchanaburi 
province, participated in the evaluation. The 
30 unknown specimens pictured (Table1), 
focusing on mosquito vectors in Thailand, 
were separated into two groups for 
identification. The first group comprised 
basic identification by genus and species 
(images 1-16), while the second group 
consisted of specimens requiring more 
careful identification at the cryptic level 
(images 17-30). 

Data analysis and statistical method 
The ROC curve illustrates the 

performance of a binary classifier across 
different decision thresholds, comparing 
True Positive Rate (the rate of correctly 
identified positives) to False Positive Rate 
(the rate of incorrectly identified negatives) 
at various settings. An ideal classifier 
achieves TPR=1 and FPR=0. This curve 
offers a visual representation of the trade-
off between TPR and FPR, facilitating 
comparison of classifier effectiveness. 
Widely utilized in machine learning, 
particularly in fields such as medical 
diagnosis, where the consequences of 
missing a positive condition or incorrectly 
identifying a negative one is significant, the 
ROC curve was generated by plotting the 
cumulative distribution function of the 
detection probability against that of the 
false-alarm probability. This analysis 
provided insights into the model's 
performance across different discrimination 
thresholds. 
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Figure 3    Workflow of a deep learning model with three layers for mosquito identification. 

 

 

Table 1    Mosquitoes species for identification comparing between public health officers and Deep 
learning 

No. Mosquitoes species No. Mosquitoes species 

1 Aedes albopictus 16 Anopheles maculatus 
2 Culex quinquefasciatus 17 Anopheles harrisoni 
3 Aedes albopictus 18 Anopheles dirus 
4 Culex quinquefasciatus 19 Anopheles harrisoni 
5 Aedes aegypti 20 Anopheles maculatus 
6 Aedes aegypti 21 Anopheles harrisoni 
7 Aedes albopictus 22 Anopheles dirus 
8 Anopheles dirus 23 Anopheles harrisoni 
9 Anopheles maculatus 24 Anopheles harrisoni 
10 Anopheles minimus 25 Anopheles harrisoni 
11 Aedes albopictus 26 Anopheles minimus 
12 Aedes aegypti 27 Anopheles harrisoni 
13 Anopheles minimus 28 Anopheles minimus 
14 Anopheles dirus 29 Anopheles minimus 
15 Anopheles minimus 30 Anopheles harrisoni 

 

 

 

  



J I T M M  P R O C E E D I N G S  

42  Vol. 12 (2024) 

Table 2    The number of total mosquito specimens for model training dataset 

Species Laboratory Specimen Fields Specimen Total 

Ae. albopictus 100 100 200 

Ae. aegypti 100 100 200 

An. minimus 100 100 200 

An. harrisoni   24 24 

An. dirus 100 100 200 

An. maculatus   200 200 

Cx. quinquefasciatus 100 100 200 

Total 500 724 1224 
 

A total of 1,220 natural early-stage Anopheles larvae (L1-L2) were collected from field sites. We could 
obtain 29 immerging adults. Molecular techniques, illustrated in Figure 4, were employed to identify 
complex species. Among 29 adults morphologically identified as An. harrisoni, molecular analysis 
confirmed 24 specimens as An. harrisoni and 4 as An. minimus A, while 1 species remained unidentified. 
 

 

 

Figure 4    Species complex identification by PCR for the identification of An. minimus A and An. 
harrisoni. In Lanes 4-5 and 7, An. minimus A is represented by a 310 bp band. Lanes 1-3, 6 and 8-13 
show An. harrisoni with a 180 bp band. Lane M displays a 100 bp ladder for size comparison. 
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RESULTS 

Sample collection and species 
identification 

A total of 100 specimens each of Ae. 
albopictus, Ae. aegypti, An. minimus, An. 
dirus, and Cx. quinquefasciatus were 
collected from fields, along with an 
additional 100 specimens from laboratory 
sources, for training and identification to 
mosquito. Additionally, 24 specimens of 
An. harrisonai from Kanchanaburi and 100 
specimens of An. minimus A from Tha Song 
Yang, Tak Province, were included in the 
dataset (Table2). 

Dataset sample size comparison 
To ascertain and enhance sample size's 

impact on the accuracy of species 
identification, our results revealed a 
positive correlation between dataset 
numbers and model accuracy. Specifically, 
varying sample sizes of 40, 60, 80, and 100 
images exhibited mean accuracies of 
81.4%, 87.3%, 89.0%, and 93.3%, 
respectively. These findings underscored 
the significance of sample size in model 
training and suggested the potential for 
further accuracy improvement through 
larger datasets. 

Picture augmentation 
Based on our experiments, the accuracy 

of mosquito identification using the Deep 
classification model ranged from 66% to 
99% (Figure 5-left). We observed a positive 
correlation between increasing picture 
augmentations and improved accuracy, 
particularly beneficial for identifying An. 
harisoni and An. minimus. This 
phenomenon can be attributed to their 
complex morphological similarities. 

Multilayer model application 
The initial layer employs the deep 

detection method to identify the overall 
mosquito object, achieving an average 
precision of up to 98%. Subsequently, the 

second layer of the network model 
evaluated separate mosquito morphological 
parts—head, abdomen, wing, and leg—
utilizing deep detection methods. The mean 
Average Precision (mAP) for this stage was 
85% (ranging from 72% to 93%). In the 
third layer, responsible for species 
identification through detection of species-
specific characteristics, the system 
demonstrates the ability to identify 
mosquito components with high accuracy: 
up to 90% for the head (ranging from 77% 
to 90%), 94% for wings (ranging from 89% 
to 98%), 93% for abdomen (ranging from 
87% to 99%), and 90% for legs (ranging 
from 71% to 92%). Deep detection 
techniques were compared at this stage, 
with the following average precision scores 
for species identification as follows: Cx. 
quinquefasciatus: 95.40%, Ae. aegypti: 
97.92%, Ae. albopictus: 99.00%, An. 
minimus: 96.19%, An. harisoni: 83.54%, 
An. maculatus: 93.73%, An. dirus: 96.71%. 
These results are illustrated in the precision-
recall graph in Figure 5-right. 

Species complex training and evaluation 
In our study, we used An. minimus group 

by specific to An. harrisoni and An. 
minimus A as the samples for AI training 
model and evaluation from total 24 An. 
harrisoni while 100 An. minimus from 
Thasong Yang district, Tak province. The 
samples were imaged and used for training 
by Deep classification model and deep 
detection. The result showed that species 
complex can be used “Deep detection” 
technique greater than “Deep 
classification” at 66% (Figure 5-left) and 
86% (Figure 5-right) respectively. 

Comparison of image-based mosquito 
identification between humans and Deep 
learning technologies 

Table 3 compares the identification 
scores of 30 unknown mosquito images 
across seven species between human 
participants (20 public health officers) and 
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the Deep Learning model. The mosquito 
identification images were divided into two 
groups: 16 randomly selected pictures for 
basic skill assessment and 14 unknown 
pictures representing species at a complex 
level, potentially requiring a dichotomous 
key. Identification scores were obtained 
from 20 human participants and 20 
instances of Deep Learning. Overall, human 
identification scores ranged from 43.33% to 
76.67%, whereas the Deep Learning model 
achieved identification rates ranging from 
66.67% to 83.33%. Interestingly, no 

significant differences in species 
classification were observed between the AI 
system and public health officers for the 
total of 30 unknown images (P value > 
0.05). Surprisingly, in the species complex 
identification level (images 17-30), the AI 
system exhibited a statistically significant 
99% accuracy advantage over public health 
officers (P value < 0.001). The raw data 
indicates a higher incidence of incorrect 
identifications by humans compared to the 
Deep Learning model in the blue box area 
(Table3).

 

 

Figure 5    The multiple layer identification by Deep classification showed the Receiver Operating 
Characteristic (ROC) curve of Deep classification for mosquito’s species identification (left). The 
Precision recall Graph of first layer model that work for classify mosquitoes from picture by deep 
detection (right).
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Table 3    The mosquito identification scores of 30 mosquito unknown images by 20 public health 
staffs and the Deep Learning model. 
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Table 3    The mosquito identification scores of 30 mosquito unknown images by 20 public health 
staffs and the Deep Learning model.  (Continue) 
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DISCUSSION 

Data set training and optimization 
This study was to assemble a 

comprehensive dataset of medically 
significant mosquito species found in 
Thailand among Ae. albopictus, Ae. 
aegypti, An. minimus, An. harrisoni, An. 
dirus, An. maculatus, and Cx. 
quinquefasciatus. This dataset served for 
training a computer-based system capable 
of more accurately identifying mosquitoes. 
Additionally, we targeted to develop a user-
friendly application tailored to 
professionals engaged in mosquito 
surveillance, thereby enhancing the 
precision and efficiency of mosquito 
identification processes. Notably, AI 
systems typically face difficulties in 
distinguishing between closely related 
species that are easily discernible to the 
human eye (Lorenz et al, 2018, Kittichai et 
al, 2021). Our research was further to 
address these challenges by optimizing and 
exploring the relationship between dataset 
size and accuracy in mosquito 
identification. We observed a significant 
positive correlation between dataset size 
and the accuracy of AI models. As the 
dataset's specimen count increased, the 
model's proficiency in identifying mosquito 
species improved—a principle aligned with 
machine learning fundamentals wherein 
larger and more diverse datasets enhance 
model performance. Moreover, the 
precision score, a key metric for evaluating 
model performance, showed a positive 
correlation with dataset size. A precision 
score nearing 1 indicated heightened 
accuracy, implying fewer false positive 
identifications. This finding highlights the 
importance of dataset size in achieving 
precise and accurate mosquito species 
classification. It is consistent to a study on 
deep learning-based organ auto-
segmentation for head-and-neck patients, 
which observed improved accuracy with 
increasing dataset size (Orlando et al, 
2021). Furthermore, the optimization of 
datasets with ample image quantities 

provided compelling evidence of the 
positive relationship between dataset size 
and accuracy in mosquito species 
identification. This emphasizes the 
importance of both data quality and 
quantity in training AI models for species 
identification. 

Concerning image resolution and 
complexity, our evaluation revealed their 
impact on the accuracy of AI models for 
mosquito species identification. Two 
groups of datasets were created: one 
comprising high-resolution plain mosquito 
pictures and the other featuring a blend of 
high and low-resolution images. Contrary 
to expectations, the group containing low-
resolution images exhibited superior 
performance, challenging the conventional 
belief that models trained solely on high-
resolution images yield greater accuracy. 
Recent research was found no statistically 
significant difference between datasets 
containing high and low-quality images 
(Fang et al, 2021). In real-world situations, 
mobile devices often capture mosquito 
images, which may lack the high resolution 
of laboratory images. The unexpected 
efficacy of the AI model on low-resolution 
images underscores the importance of 
adaptability. This revelation has practical 
implications for fieldwork, reducing 
reliance on high-end equipment and 
enhancing accessibility to mosquito 
surveillance tools. Specifically, designed 
tools for microscopes or mobile devices can 
assist entomologists in real-world 
scenarios, alleviating workload burdens and 
augmenting accuracy. 

Deep learning approach to entomology 
work 

The traditional linear logic of AI models 
for mosquito species identification were 
demonstrated here as well as the explored 
artificial intelligence techniques for 
classifying living organisms, emphasizing 
the gradual evolution of artificial neural 
network systems as practical tools (Bartoń 
& Barton, 2019).  Unlike human cognition, 
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which relies on experience, theory, and 
knowledge, AI operates on logic and 
probabilities. This prompted an exploration 
into infusing AI with more human-like 
logic, particularly that of entomologists 
who use standardized morphological 
pictorial keys. Existing AI models, 
appearing as "linear robots," raised 
concerns about their efficiency in emulating 
entomologists' decision-making processes. 
Heat maps of Table 3 showed that AI 
models often relied on image features rather 
than the fundamental characteristics used 
by human experts for identification. 
Conducting multilayer deep learning, we 
aimed to train the computers analysis 
information in a manner similar to human 
cognitive processes that was inspired by a 
successful study on spotting diseases in 
potatoes (Rashid et al, 2021), achieving 
over 80% accuracy. The comparison of the 
accurate species identification between 
expert entomologists and an Artificial 
Intelligence (AI) identification platform 
was achieved an accuracy range of 67% to 
87%. This experiment underscores the 
persistent challenge posed by species 
complexes. Although experts can identify 
the subtle differences between closely 
related species, field officers might 
overlook these nuanced distinctions. Such 
misidentifications can significantly impact 
vector surveillance efforts, leading to 
incomplete investigations and suboptimal 
disease management strategies. Similar 
challenges related to species complexes 
have also been observed in studies 
involving Anopheles mosquitoes. One 
particular study focused on analyzing the 
wing vein patterns of the Gambiae complex, 
which includes An. gambiae, An. 
arabiensis, and An. coluzzii (Cannet et al, 
2023).  Moreover, the study results have 
demonstrated that discerning between these 
closely related species remains highly 
challenge for future research. The cryptic 
patterns of their wing veins create problem 
to species identified, emphasizing the 
requirement for additional research in this 
topic. In practical scenarios, confirmation 

continues to rely on molecular techniques, 
running parallel to the development of 
innovative methods for collaborative 
advancement. The capacity of artificial 
intelligence to classify insects is still 
restricted; unlike the work of experienced 
entomologists, it cannot perform effectively 
when presented with unclear specimen. 
However, artificial intelligence has one 
benefit over human memory and actually 
accurate. 

In this experiment, it was pointed out 
that the classification of mosquitoes as the 
main disease vectors in Thailand using 
artificial intelligence. It can be done and 
even working at the complex species level 
can produce positive results. However, 
hardware limitations for processing are still 
the main problem in local application. In the 
future, if computing hardware is invented 
with good performance and a price that is 
accessible to officials or the general public, 
this research will help reduce the workload 
of entomologists in the future. 

CONCLUSIONS 

Our study revealed no significant 
difference in performance between the 
Deep Detection AI model and human 
participants. Surprisingly, the Deep 
Classification AI model exhibited 
significantly better performance than 
humans in identifying mosquito species 
complexes. These findings suggest that the 
Deep Classification AI model holds 
promise for enhancing the accuracy of 
mosquito identification, while the Deep 
Detection AI model may not offer 
substantial advantages over human 
identification. 
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