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ABSTRACT 
n the context of the ongoing COVID-19 pandemic, understanding household transmission 
has become crucial for formulating effective intervention strategies. This study investigated 
the importance of diverse contact in transmission dynamics within household settings by 

leveraging the small-world network concept, characterized by high local clustering and short 
average path length. The methodology involved developing an agent-based simulation model 
with a two-layer contact network, distinguishing between household and non-household 
contacts. This simulation aimed to explore the impact of contact patterns on transmission 
dynamics and evaluates seven Non-Pharmaceutical Intervention (NPI) scenarios focusing on 
reducing the magnitude of different contact pattern types and timing of the intervention. The 
results revealed that applying the NPI for both contact types can effectively reduce peak daily 
case and fatalities compared to the baseline scenario (do-nothing) scenario, with varied 
outcomes across scenarios. Notably, a reduction in non-household contacts contributes 
substantially more to overall transmission compared to a reduction in household contacts, 
especially when assuming a non-equal or greater proportion of the two contact types. In the 
setting where household contacts are dominant, reducing household contacts was highly 
effective at mitigating transmission, particularly when the NPI leading to contact reduction was 
implemented before patients exhibited visible symptoms. Despite the significance of household 
contacts, the broader network of non-household contacts remains a crucial factor influencing 
overall disease transmission.  

This research highlights the impact of considering heterogeneous contact patterns in household 
settings as well as providing insights into tailored intervention strategies.  

Keywords: COVID-19, small-world network, household contact, mathematical modeling, 
transmission dynamics 
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INTRODUCTION 

The coronavirus disease 2019 (COVID-
19) pandemic, caused by the SARS-CoV-2 
virus, has significantly impacted humanity 
around the world, not only in terms of 
physical and mental health but also in 
various aspects such as the economy, 
education, and social norms. It is possible 
that the long-term effects of the pandemic 
will continue to persist for several years and 
integrate as a part of one’s daily life as a 
“new normal”. In the “new normal” 
lifestyle, people now learn how to adjust 
themselves around the existence of 
infections; for example, mask wearing 
indoors becomes a norm, and social 
distancing is now commonly practiced at 
the individual, household, and community 
levels. Technology has helped all age range 
populations to have a more flexible working 
or studying lifestyle and be more agile in 
responding to future disease emergencies. It 
would be useful to use mathematical 
models to guide the design of some optimal 
interventions in the new era. 

In the epidemiology of airborne 
infectious agents including influenza, 
common colds, and SARS, households play 
a critical role in disease transmission. When 
an infected patient is present in a household, 
the infection can spread quickly due to the 
frequent close contact that characterizes 
relationships between household members. 
There were many identified COVID-19 
clusters resulting from intra-family 
transmission, indicating significant rates of 
household transmission. For example, it 
was noted that between 75 and 80 percent 
of clustered COVID-19 infections in China 
occurred within families (Lei et al., 2020). 
Omicron, the prominent SARS-CoV-2 
variant, has currently replaced almost all 
other variants across the world (Voskarides, 
2022). It is possible that new subvariants 
with these or other concerning traits could 
emerge in the future. This can raise 
particular concern for individuals who are 
at higher risk of severe illness or 

complications from the disease, such as 
young children or older adults. 
Furthermore, the number of fatalities has 
considerably increased with age in 
confirmed cases (Luangasanatip et al., 
2023; Wang et al., 2020). In addition, 
elderly adults are often more at risk from 
household transmission than from public 
transmission since they usually stay at 
home (Wang et al., 2020).  However, there 
is limited data on secondary transmission 
within household settings (Wang et al., 
2020), and few studies have explored 
contact networks within households 
(Grijalva et al., 2015), despite their 
significant role in the spread of diseases.  

In the case of the COVID-19 pandemic, 
non-pharmaceutical interventions (NPI) 
also played a large role in disease mitigation 
until drugs and vaccines became available 
(Chowdhury et al., 2020; Davis et al., 2022; 
Schneiders et al., 2022). Many NPIs, such 
as working from home, social distancing, 
mask wearing, school closures, and self-
isolation, would significantly alter the 
contact patterns in households (Canales-
Romero & Hachfeld, 2022; Yamamura & 
Tsustsui, 2021) and affect the spread of 
infections within household and non-
household settings. Consequently, it is 
necessary to consider a proactive NPI 
strategy and understand their impact on 
COVID-19 transmission, especially in 
households, which may be a crucial factor 
in overall transmission. 

Therefore, this study aims to use 
mathematical modeling to quantify the 
impacts of household transmission based on 
the modification of simulated networks 
such as Small-World networks. The 
research will be useful for guiding 
intervention studies at the household level 
for controlling disease outbreaks, given that 
real data on household and non-household 
mixing contact patterns is limited. 
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MATERIALS AND METHODS 

The simulation framework conducted in 
this study leverages the Anylogic Personal 
Learning Edition Software Simulation 
(AnyLogic 8 Personal Learning Edition 
8.7.12, The AnyLogic Company, 2022), a 
powerful tool tailored for developing 
Agent-Based Modelling (ABM). To portray 
a nuanced disease transmission in a 
household setting, the introduced two-layer 
contact network approach offers a more 
fitting solution in separating household and 
non-household transmission into distinct 
layers. 

1) Household Transmission Modelling: 

In the first layer (Figure 1a), 
transmissions within households are 
represented using a fully connected 
network. This network is defined by the 
connectivity of all nodes, with each node 
connected to every other node throughout 
the network. Here, nodes represent 
household members, and the connections 
between nodes denote interactions among 
these members. This reflects the close and 
frequent interactions among family 
members within a household, which are key 
aspects of disease transmission in shared 
living spaces. 

 

 

 

 

 

 

 

Figure 1    Contact Network Layer a) Household Contact characterized by a fully connected network, 
with nodes representing individuals and illustrating relationships within households b) Non-Household 
Contact characterized by a Small-World (SMW) network with nodes representing households, 
illustrating connections among households in the network. 

 

2) Non-Household Transmission 
Modelling: 

In addition to the within-household 
network, another small-world network layer 
is introduced to capture the dynamics of 
across-household transmission, 
representing interactions outside the 
household. In this second layer (Figure 1b), 
nodes represent individual houses, each 

containing the individuals represented in 
the first layer. The edges in this network 
signify connections between households, 
depicting situations where individuals from 
distinct households come into contact with 
one another. The “short” links in this 
context represent frequent and close 
interactions between households, covering 
scenarios such as neighboring houses, 
where families residing nearby are more 

a) b) 
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inclined to have frequent interactions. 
Additionally, it includes workplaces or 
schools that involve larger gatherings of 
individuals from the same groups. 
Conversely, “long” links represent less 
frequent or more distant interactions 
between households that lack close social 
ties. These long links might account for 
daily random interactions in public spaces 
or other social community events that occur 
less frequently but may also involve larger 
gatherings of people. This approach reflects 
the real-life scenario where individuals are 
more likely to interact frequently with 
neighboring households while occasionally 
engaging with more distant ones. Therefore, 
integrating both types of links enables a 
more comprehensive representation of the 
diverse and intricate interaction patterns. 

In each layer of the network, the nodes 
function as agents, which serve as the 
primary focus of the individual active 
component within the ABM, with unique 
attributes and behaviors. The links in the 
network serve as connections that facilitate 
interactions, representing physical or verbal 
contacts capable of transmitting infections. 
It is also crucial to define the rules 
governing agent behaviors, encompassing 
contact patterns and the adoption of Non-
Pharmaceutical Interventions (NPI), which 
are influenced by pre-established 
characteristics. Key to defining these rules 
is the use of statecharts, which graphically 
represent an agent's possible health states 
and transitions between them based on 
events and conditions. The statecharts in 
this model represent various statuses within 
each compartment of the model, while also 
capturing their interactions with others. 
This model adapts the SIRS compartment-
based framework to simulate COVID-19 
transmission within households, 
incorporating specific factors related to the 
SARS-CoV-2 Omicron variant. A 
susceptible agent in the S state can 
transition to the I state if they come into 
close contact with an infected agent. In 
addition, an infectious agent in the I state 

can transition to the R state if they recover 
from the disease, and an agent in the R state 
can transition back to the S state if they lose 
immunity to the disease. Notably, 
presymptomatic and symptomatic states are 
added as sub-compartments within the 
infectious state, representing individuals 
initially infected (presymptomatic) but 
capable of transmitting the disease and later 
developing symptoms. This acknowledges 
the potential for asymptomatic individuals 
to spread the disease sporadically due to a 
lower likelihood of taking preventative 
measures. Additionally, a new deceased 
state is introduced to account for case 
fatality, measuring disease severity and 
removing deceased individuals from the 
model, as they should not maintain any 
connections. 

In order to fully capture the intricacies of 
diverse contact intimacy in real-world 
interactions, it is essential to assign distinct 
contact rates across the two layers of the 
networks. Recognizing diverse contact 
patterns influenced by factors like 
geographical setting, lifestyle, culture 
differences, socio-economic status, and 
others, contact type ratios are varied to 
cover a range of possible patterns. The 
hypothetical scenarios are introduced with 
varying assumptions regarding contact 
types, while maintaining a fixed total 
number of contacts at 15 per day, except for 
the last case where the number of contacts 
is varied. This number falls within the range 
of contact frequencies reported earlier in 
China (Huang et al., 2020; Zhang et al., 
2020). 

Assumptions around the household and 
non-household contacts 
Assumption 1: Balanced Contact: 

Both household and non-household 
contacts are evenly distributed, each at a 
rate of 7.5 per day in this scenario. 

Assumption 2: Household-Dominant 
Contact: 

Under this assumption, household 
contacts are elevated to 10 per day, 
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accompanied by a reduction in non-
household contacts to 5 per day. 

Assumption 3: Non-Household-Dominant 
Contact: 

Conversely, regarding this assumption, 
non-household contacts are increased to 10 
per day, while household contacts decrease 
to 5 per day. 

Assumption 4: Age-Varying Contact: 

The model is adapted to reflect age-
dependent contact patterns in a specific 
setting. Given this assumption, contact 
proportions are adjusted based on example 
data from a CDC study conducted in Tokyo 
Prefecture, Japan (Miyahara et al., 2023), 
where non-household contacts are 
dominant for younger age groups (0-40), 
while household contacts are dominant for 
elders (above 40).  

 

Table 1    Numbers of household and non-household contacts per day for each age range group, when 
assuming age-varying contacts (Miyahara et al., 2023). 

Age Range (yrs) Household Contact Rate (per day) Non-Household Contact Rate (per day) 

0-19 6.10 19.40 

20-39 7.90 14.60 

40-59 5.40 1.95 

60-99 1.05 0.85 

 

The simulations encompassed the seven 
case scenarios, involving over 400 
individuals distributed across 140 
households with an average of three 
residents per house. Over a 100-day 
timeframe, each scenario underwent 100 
repeat iterations, contributing to more 
reliable results with reduced marginal error. 
The study explores the influence of varying 
contact patterns on the effectiveness of 
different NPI strategies, with a particular 
focus on two key metric outputs—Total 
Cases and Fatalities over a 100-day 
timeframe. This analysis quantifies the 
impacts of controlling various contact types 
and their timing in comparison to the 
baseline. The scenarios to be explored 
include: 

Baseline scenario - Do nothing 
(SC0_NONE) 

Scenario 1 - Restrict non-household 
contacts (SC1_NON_HH_CONTACT) 

Scenario 2 - Restrict household contacts 
(SC2_HH_CONTACT) 

Scenario 3 - Restrict non-household 
contacts ONLY IF one has visible 
symptoms 
(SC3_NON_HH_CONTACT_IF) 

Scenario 4 - Restrict household contacts 
ONLY IF one has visible symptoms   
(SC4 _HH_CONTACT_IF) 

Scenario 5 - Restrict all contacts 
(SC5_ALL_CONTACT) 

Scenario 6 - Restrict all contacts ONLY IF 
one has visible symptoms 
(SC6_ALL_CONTACT_IF) 
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To represent these NPI scenarios, the 
approach involves modifying the contact 
network by removing edges when infected 
individuals undergo self-quarantine, 
effectively cutting off their contact with 
others. This is achieved by adding a guard 
condition that blocks the transmission 
events from the infected node, preventing 
further infection spread at each network 
layer. This approach allows for the 
simulation of quarantine measures at both 
the household and individual levels, 
encompassing self-isolation and home-
isolation strategies. After defining the 
agents, their connection, and their 
interactions in the environment, the 
simulation is run to observe the spread of 
the disease over time. 

RESULTS 

Figures 2-5 consists of visual 
representations include 2D histogram charts 
illustrating daily new infectious cases over 
time and bar charts depicting the total cases 
(total number of infected individuals) and 
fatalities (total number of deaths) resulting 
from the infectious disease under varying 
assumptions of contact types. These figures 
serve as focal points, facilitating the 
discernment of trends and the assessment of 
intervention effectiveness across diverse 
contact patterns and scenarios.

 

 

 

Assumption 1: Balanced Contact 

 

 

 

 

 

 

 

 

 

 

Figure 2    Model outputs from different intervention scenarios, when assuming balanced contacts a) 
Daily cases over time, b) Total cases, and c) Total fatalities from 100 simulations 
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Assumption 2: Household-Dominant Contact 

 

 

 

 

 

 

 

 

 

 

 
Figure 3    Model outputs from different intervention scenarios, when assuming household-dominant 
contacts a) Daily cases over time, b) Total cases, and c) Total fatalities from 100 simulations 

 

 

 

 

Assumption 3: Non-Household-Dominant Contact 

 

 

 

 

 

 

 

 

 

 

 
Figure 4    Model outputs from different intervention scenarios, when assuming non-household-
dominant contacts a) Daily cases over time, b) Total cases, and c) Total fatalities from 100 simulations   
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Assumption 4: Age-Varying Contact 

 

 

 

 

 

 

 

 

 

 
 
Figure 5    Model outputs from different intervention scenarios, when assuming age-varying contacts 
a) Daily cases over time, b) Total cases, and c) Total fatalities from 100 simulations 

 

 

For more detailed numerical data, Table 
2-5 below presents comprehensive results 
for seven NPI scenarios under various 
contact pattern assumptions, presenting 
three key outcome metrics to assess the 
impact of seven NPI scenarios under 
various contact pattern assumptions.  Each 
result represents the mean average from 100 
iterations. First, "Peak Daily Cases" 
represents the highest number of new 
confirmed cases in a single day from all 
over epidemic duration, providing insight 
into the intensity of disease spread. Second, 
"Total Cases" accounts for the cumulative 
number of infected individuals throughout 
the simulation, including the initially 
infected population. It is important to note 

that this count remains non-zero even when 
the daily incidence is zero, as it incorporates 
the initially infected individuals. Finally, 
"Fatalities" captures the overall number of 
fatalities resulting from the infectious 
disease, offering a measure of the severity 
of the outbreak. All three-output metrics are 
presented in the table, each with the 
following units: "Peak Daily Cases" 
(cases/day), "Total Cases”, and "Fatalities". 
Note that in all NPI scenarios, an extreme 
best-case assumption of 100% effectiveness 
is applied for simplification, representing 
an ideal scenario of comprehensive public 
health measures. Consequently, Scenario 5 
exhibits zero new incidence cases across all 
assumptions
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Table 2    Average number of peak daily cases, total cases, and fatalities (95% CI) from 100 
simulations, under Assumption 1: Balanced Contact 

Intervention 
Assumption 1 

Peak Daily Cases 
(95% CI) 

Total Cases 
(95% CI) 

Fatalities 
(95% CI) 

Baseline Scenario 39.48  
(38.26-40.70) 

182.81 
(177.51-188.11) 

7.93 
(7.42-8.44) 

Scenario1 7.34 
(6.94-7.74) 

33.39 
(32.10-34.68) 

0.81 
(0.64-0.98) 

Scenario2 17.06 
(16.28-17.84) 

77.68 
(74.00-81.36) 

6.62 
(6.06-7.18) 

Scenario3 21.24 
(20.22-22.26) 

91.82 
(87.06-96.58) 

5.02 
(4.58-5.46) 

Scenario4 30.91 
(29.80-32.02) 

147.79 
(142.47-153.11) 

8.16 
(7.65-8.67) 

Scenario5 0.00 27.29 
(26.31-28.27) 0.00 

Scenario6 16.87 
(15.89-17.85) 

62.41 
(59.12-65.70) 

3.48 
(3.04-3.92) 

 
 
 

Table 3    Average number of peak daily cases, total cases, and fatalities (95% CI) from 100 
simulations, under Assumption 2: Household-Dominant Contact 

Intervention 
Assumption 2 

Peak Daily Cases 
(95% CI) 

Total Cases 
(95% CI) 

Fatalities 
(95% CI) 

Baseline Scenario 30.60  
(29.65-31.55) 

146.22  
(141.80-150.64) 

7.40  
(6.82-7.98) 

Scenario1 8.87  
(8.39-9.35) 

36.11  
(34.51-37.71) 

0.79  
(0.63-0.95) 

Scenario2 8.78  
(8.20-9.36) 

36.67  
(34.67-38.67) 

2.60  
(2.24-2.96) 

Scenario3 18.97  
(17.97-19.98) 

76.06  
(72.20-79.92) 

3.89  
(3.45-4.33) 

Scenario4 21.90  
(21.00-22.80) 

98.87  
(94.53-103.21) 

6.96  
(6.48-7.44) 

Scenario5 0.00  28.31  
(27.29-29.33) 

0.00  

Scenario6 15.58  
(14.69-16.47) 

55.25  
(51.88-58.62) 

2.76  
(2.46-3.06) 
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Table 4    Average number of peak daily cases, total cases, and fatalities (95% CI) from 100 
simulations, under Assumption 3: Non-Household-Dominant Contact 

Intervention 
Assumption 3 

Peak Daily Cases 
(95% CI) 

Total Cases 
(95% CI) 

Fatalities 
(95% CI) 

Baseline Scenario 43.84  
(42.70-44.98) 

202.80  
(199.03-206.57) 

8.21  
(7.67-8.75) 

Scenario1 5.35  
(5.03-5.67) 

29.30  
(28.10-30.50) 

0.65  
(0.50-0.81) 

Scenario2 26.90  
(25.92-27.88) 

130.91  
(126.22-135.60) 

8.14  
(7.49-8.79) 

Scenario3 23.81  
(22.65-24.97) 

104.36  
(99.24-109.48) 

5.33  
(4.86-5.80) 

Scenario4 37.44  
(36.32-38.56) 

178.82  
(174.66-182.98) 

9.05  
(8.43-9.67) 

Scenario5 
0.00  

27.65  
(26.71-28.59) 0.00  

Scenario6 19.38  
(18.24-20.52) 

72.43  
(68.18-76.68) 

4.53  
(3.97-5.09) 

 

Table 5    Average number of peak daily cases, total cases, and fatalities (95% CI) from 100 
simulations, under Assumption 4: Age-Varying Contact 

Intervention 
Assumption 4 

Peak Daily Cases 
(95% CI) 

Total Cases 
(95% CI) 

Fatalities 
(95% CI) 

Baseline Scenario 14.72  
(14.02-15.42) 

63.96  
(60.45-67.48) 

5.95  
(5.38-6.52) 

Scenario1 4.73  
(4.43-5.03) 

28.71  
(27.67-29.75) 

0.58  
(0.42-0.74) 

Scenario2 6.31  
(5.93-6.69) 

30.71  
(29.34-32.08) 

1.78  
(1.45-2.11) 

Scenario3 9.70  
(9.04-10.36) 

38.97  
(36.79-41.15) 

1.78  
(1.47-2.09) 

Scenario4 10.78  
(10.19-11.37) 

44.70  
(42.50-46.90) 

4.14  
(3.68-4.60) 

Scenario5 0.00  27.16  
(26.17-28.15) 

0.00  

Scenario6 8.25  
(7.54-8.96) 

34.06  
(32.12-36.00) 

0.96  
(0.79-1.13) 
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Examining the overall results reveals 
that the consistent application of NPI 
interventions effectively controls 
transmission and mitigates fatality across 
scenarios. This leads to a reduced peak in 
the number of new confirmed cases per day 
compared to the baseline 'do nothing' 
scenario. The effectiveness varies based on 
different contact scenarios. Considering the 
contribution of contact types to overall 
transmission, non-household contact 
emerges as a significant factor. In the case 
of non-household dominant contact, the 
highest prevalence (202.80; 95% CI, 
199.03-206.57) and considerable fatality 
(8.21; 95% CI, 7.67-8.75) are observed 
compared to other assumption cases. 
Restricting household contacts appears to 
have a less notable effect on reducing the 
peak of the curve, with NPI scenarios 1 and 
3, focusing on restricting non-household 
contacts, demonstrating more visible 
effectiveness. Despite non-household 
contacts usually having a more pronounced 
impact on transmission dynamics, the 
timing of NPI implementation is also 
critical. Continuous application 
consistently outperforms post-symptomatic 
interventions, especially in scenarios 
dominated by household contacts (see 
Table 3). In this context, Scenario 2, 
consistently applying NPI measures to 
household contacts, achieves a substantial 
reduction of 71% in maximum incidence 
and 65% in casualties compared to the 
baseline scenario. In contrast, Scenario 4, 
which focuses on post-symptomatic NPI for 
household contacts, exhibits a less 
pronounced reduction of 28% in maximum 
incidence and 6% in casualties. Despite 
both scenarios targeting household 
contacts, there is a distinct difference in 
outcomes. 

 

DISCUSSION 

This research introduces a novel two-
layer network based on Small-World 
Network (SMW) properties within an 
Agent-Based Modeling (ABM) framework, 
aiming to capture the heterogeneous contact 
patterns between household and non-
household interactions. The model 
differentiates contact type ratios to explore 
the consequences of varying contact 
patterns, conducting simulations across 
diverse settings to provide insights into the 
effectiveness of different Non-
Pharmaceutical Intervention (NPI) 
strategies. 

In analyzing the results, NPIs exhibit a 
crucial role in curbing both prevalence and 
fatality, demonstrating varying 
effectiveness across different scenarios. It is 
also apparent that while household contacts 
may play a substantial role, non-household 
contacts significantly contribute to overall 
transmission due to their ability to facilitate 
rapid transmission across all networks. 
These findings align with recent research by 
Du (2021) suggesting that reducing long-
range edges in SMW contact networks, 
such as restricting domestic or international 
travel, can effectively delay and reduce the 
peaks of daily new cases and fatalities. This 
is because removing non-household 
contacts isolates households, resulting in 
higher clustering in this layer. This 
observation is consistent with the findings 
of Volz et al. (2011), who demonstrated that 
clustering within households can slow 
transmission and reduce the final number of 
infected individuals. While reducing either 
"short" or "long" contacts can be beneficial, 
simultaneous reductions of both have a 
significantly stronger impact on 
intervention effectiveness, especially when 
implemented early to delay the peak (Du, 
2021). This parallels Du (2021)'s findings 
on the importance of combined intervention 
strategies. 
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Moreover, the possibility of pre-
symptomatic transmission underscores the 
limited effectiveness of interventions solely 
focused on applying post-symptom onset. 
Based on this model simulation and model 
assumptions, the consistent application of 
NPIs proves superior to post-symptomatic 
application in mitigating the impact. These 
findings correspond to those of Chen et al. 
(2021) and Hill et al. (2021), highlighting 
the importance of rapid case detection 
through contact tracing to effectively 
identify infected individuals for timely 
isolation strategies in containing 
transmission. This reinforces the need for 
timely interventions and comprehensive 
strategies to address transmission dynamics 
effectively. 

Nevertheless, the current research model 
heavily relies on assumptions and 
simplifications based on contact rates and 
patterns due to limited data availability. 
This simplification aims to strike a balance 
between complexity and feasibility, 
preventing the model from becoming overly 
intricate. Despite current limitations, the 
flexibility of adjusting input parameters in 
this model allows for the exploration of 
more hypothetical scenarios. It enables the 
incorporation of new data on disease 
characteristics and contact patterns in 
various settings as more information 
becomes available in the future. The 
simulation model developed in this research 
can provide some ideas for designing future 
models to evaluate different NPI strategies, 
especially those involving household and 
non-household transmission controls for 
future refinements and adaptations based on 
evolving data. Such studies can enhance 
understanding of disease dynamics in 
relation to heterogeneities in contact 
patterns within and between households. 
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